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ABSTRACT

Let A be a bounded linear operator in a Hilbert space. If A is

At A t
normal then logile ull and log lie ull are convex functions for all

u * 0. In this paper we prove that these properties characterize normal

operators.
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SIGNIFICANCE AND EXPLANATION

Consider the differential equation

(1) dx = Ax
dt

in a Hilbert soace H . Assume that A:H + H is a bounded linear operator.

Then any solution of (1) is of the form x(t) = eAtu . Suppose that A is a

normal operator, i.e. AA = A A . Then one can show that the function

loghx(t)1I is a convex function on R. Here lx11 denotes the norm of x

in H . The purpose of this paper is to study the converse of this

statement. It turns out that there is a distinction between the finite and

infinite dimensional case of H . In the first case the convexity of

logx(t)I for all non-trivial solutions x(t) implies the normality of A.

In the infinite dimensional case this result does not apply for a general

A. We show, however, if we assume in addition that loglly(t) l is also convex

for all non-trivial solutions of the system

(2) = A *y
(t

then A must be a normal operator. c ,'s-I -.
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The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report.



A CHARACTERIZATION OF NORMAL OPERATORS

Shmuel Friedland and Luc r. Tartar

1. Introduction.

Let H be a Hilbert space over the complex numbers C with an inner

product (x,y). Assume that A:H + H is a bounded linear operator. A

straightforward calculation shows (see the next section)

Lemma 1. Let A:H + H bq a bounded linear operator. If A *A - AA* i

non-negative definite then logle Atuil is convex on R for all u 1 0

Thus if A is normal then logleAt ull and logle A tull are convex. However,

there are non-normal operators A such that 0 1 A A - AA. Here, as usual,

for self-adjoint operators S,T the inequality S 4 T denotes tiat T-S is

a non-negative definite operator. For example let H = k2 and choose A to

be the shift operator A(x1 ,x2,*.) (0,x ,x2,...). In this case
*21 2P

logle A tul; is not convex for u = (0,1,0,-..). This situation can not hold

in a finite dimensional H . More precisely we have

Theorem 1. Let A = P + iQ, where P and Q are bounded self-n7oirt

operators. Assume that P has only a point spectrum (i.e. H has an

orthonormal basis consisting of eigen-elements of P ). Then A is normal i'

and only if

(1) 2 (logie Atul)(0) > 0 for all u 0
dt

2

*Mathematics Research Center and Hebrew University, Jerusalem.

Mathematics Research Center and University of Paris - XI.

Sponsored by the United States Army under Contract No. 0AA0 -?'-C-rfn041.



Our main result is

Theorem 2. Let A:H + H be a hounded linear operator. Then A is

normal if and only if (1) and

(2) dt (logne AtuII)(O)) 0 f or all u *0

hold.

we conjecture

Cojecture. Assume that (1) holds. Then

o A*A -AA

-2-



2. Proofs.

Using the group properties of eAt we easily deduce

Lemma 2. Let A :H + H be a bounded linear operator. Then log lie Atull

is convex on R for all u * 0 if and only if (1) holds.

A straightforward calculation shows
1d-2 2 A 2  , 2A•

-2 (logileAtull)(0) /2 (u,u) 2[((A 2 + A .2 + 2A*A)u,u) - ((A + A )u,u)2

dt
2

Thus (1) is equivalent to the inequality

(3) ((A + A )u,u)2 4 ((A2 + A*2 + 2A*A)u,u)(u,u).

The Cauchy-Schwarz inequality yields

((A + A*)u,u)2 4 ((A + A*)2u,u)(u,u)

As
*2 2 A*2 * (*A *

(A + A*) =A +A + 2AA - (AA- AA)

the assumption that A A - AA > 0 implies the inequality (3). This

establishes Lemma 1 .

To give an equivalent form of the inequality (3) we need the following

lemma.

Lemma 3. Let R,S,T:H + H be self-adjoint non-negative definite

operators. Then

2
(4) (Ru,u) 2 (Su,u)(Tu,u), for all u c H

if and only if
-1 S

(5) 2R a- S + aT

for all positive a .

Proof. The inequality (4) implies (9) in view of arithmetic-geometric

inequality. Suppose that (5) holds. If (Su,u) = 0 then by letting a tend

to zero we deduce that (Ru,u) = 0 . Thus we may assume that (Su,u)(Tu,u) >

0 * In that case choose a = [(Su,u)/(Tuu)) 1/ to obtain (4).

-3-



Lemma 4. Let A = P + iQ , where P and Q are self-adjoint. Then

(3) is equivalent to the inequality

(6) I(QP - PQ) < (P -ai)
2

for all real a

Proof. A straightforward computation shows that the inequality (3) is

invariant under the transformation A + A + wI . So we may assume that

P ) 0 . Also in terms of P and Q (3) becomes
2 2 i

(Pu,u) 2 ([P2 + 2 (PQ - QP)lu,u)(u,u)

In view of Lemma 3 the above inequality is equivalent to (6) for a > 0

As P ) 0 (6) trivially holds also for a < 0 . Again (6) is invariant under

the transformation A + A + WI . The proof of the lemma is completed. U

Lemma 5 Let P,Q:H + H be bounded self-adloint operators. Assume that

Pu = au , u * 0 and suppose that (6) holds. Then

(7) P(Qu) = a(Qu)

Proof. Let y = u + sx , where s C C and (u,x) 0 . As

(Bu,u) - ((P - )2uU) (P - = 2uX) = , (QP - PQ),

(6) implies

2Re{s(Bu,x)1 + Isl 2(Bx,x) < Is2 ((P - l) 2X,X).

Since s is arbitrary we obtain that (Bu,x) = 0 if (u,x) = 0. So

Bu = $u . Pinally the equality (Bu,u) = 0 yields B = 0 , i.e. Ru = 0.

This proves (7). •

Proof of Theorem 1. As P has only a point spectrum H decomposes to a

direct sum of Invariant eigen-subspaces of P

H =  H , (P - I)H 0 •

Lemma 5 implies that QHA c H . That is PQ QP which is eauivalent to

the normality of A •

-4-



lgIeAtui A t
Assume now that loglie At and loqrlA ul1 are convex on P ic,' - l,

u * 0 . According to Lemma 4 these conditions are equivalent to

(-(P - al) 2 1I (QP - PQ) C (P -

for all a c R . Then Theorem 2 follows from our last theorem.

Theorem 3. Let B,P:H + H be bounded self-adjoint operators. Assume

that

(9) -(P - aI) B 4 (P - aT) , = 2m/(2k - 1)

for all real a , where m Z > 1 are inteqers. Then B = 0

Proof. Suppose that Pu aiu . Then (9) yields (Buu) = 0 . Appl.y the

arkTuments of the proof of Lemma 5 to deduce Bu = 0. Decompose H Hi + H.),

PH i C Hi  such that H2 has an orthonormal basis consisting of eioen-elemcrts

of P and H1 - the orthogonal complement of H2 - does not contain arn

eigen-elements of P . Thus BH2 
= 0 . Therefore it is enouqh to assume

that P has only a continuous spectrum. Without restriction in aeneralitv" we

may asssume that the spectrum of P lies in [0,11. Consider the s(ectia

decomposition of P

P= f XdE(X).
0

Let
i/n

Ei = f dE(X) , i =

(i-1)/n

Thus
n

I = [ Ei ,F.E = E S E. ~ 1,---,n.

Choose c = (2i- 1)/2n Then (9) yields

(10) -(2n)-VE. 4 E.BE. (2n)- E.1 1 1 1

Let y = u + sy , u E E.H, y E (I - F.)H . Then for the same *ic-

a (9) implies

2 2-P 2
I(su,u) + 2Refs(Ply,u)1 + IsI (P:y,y)f (2n) (u,u) + ISI (v,y)-



The same inequality applies if we replace s by -s. Combine these two

inequalities to get

21Re(s(By,u))I 4 (2n)- (uu) + IsI 2(y,y)

Choose Isl = (2n)- / 2 , arg s = -arg(By,u) to deduce

- 12
(11)I(By,u)I 4 (2n) [(u,u) + (y,y)]/2, u e E.H, V E (I - E.)H11

Let X e O(B). We claim that

(12) IXI 3(2n) (

Indeed, there exists x E H such that
- 1i2

h1Bx -Xxi 4 (2n) , ilxii = 1
n I

As Nxil 2  HE.X1l2 = I we may assume that lIE xli ) n-"/2 for some

I 4 n. So

liEBx- XE xil < (2n)

Thus

JI ( Vn i(2n)- +/ 2 E j BxlI)

We now estimate liEBli Clearly

lIE BN = sup Re{(E.Bv,w)} = sup Re{(E.Bv,Ew)} <

livil = iwil = 1 lvii liE w l

sup Re{(EjBE v,E w)} +
liE vH = HE wl = 1
) j

+ sup Re{(E.B(I-E )v,Ew)}
I(I-E.)vil = E.w11 - 1

J 1

In view of (10) and (11) we get

sup Re{(E .BE v,E w)) 4 (2n)-

liE v11 = HIE.w1 = 1

sup Re{(E.B(I-E.)v,Ew)} < (2n)-
I(I-E )vll = liE wl = 1 1

.... j



Combine the above inequalities to deduce (12). As n is arbitrary and

W > 1 (12) implies a(B) = (0}

As B is self-adjoint we conclude that B = 0

SF: LCT/db
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